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Abstract:

There is a growing awareness that mid-to-high latitude regions will be strongly affected by climate change. These changes are
predicted to be especially pronounced during winter, particularly at higher latitudes. To test how water quality in northern
catchments could be affected by warmer winter climates, we assembled long-term data from eight well-studied catchments in
Sweden, Scotland, Canada and the USA across a climatic gradient spanning from �2 to +9 �C in mean annual temperature and
between�11.6 and + 6.1 �C in average winter temperature. We used the climatic gradient combined with inter-annual variability
among catchments to examine how warmer winters could affect the seasonality (seasonal timing) and synchroneity (coupling) of
water and dissolved organic carbon (DOC) fluxes. In general, sites with colder winters (less than �5 �C) experienced an export
concentrated in spring, whereas sites with warmer winters (>0 �C) displayed a more evenly distributed export across all seasons.
Catchments with warmer winters also displayed less synchroneity between water and DOC flux during winter compared with
colder sites, whereas the opposite was found for the spring. Patterns from the climatic gradient were supported by inter-annual
variability at individual sites where both seasonality and synchroneity in the spring were related to the temperature during the
preceding winter. Our findings suggest that one likely consequence of warmer winters in northern regions is that the proportion of
the annual DOC and water export will increase during winter and decrease during spring and summer. This is of importance as it is the
latter seasons duringwhich downstream utilization of bothwater andDOCoften is largest. Copyright© 2012 JohnWiley& Sons, Ltd.
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INTRODUCTION

Export of water and dissolved solutes from snow-covered
catchments is of critical concern for downstream aquatic
ecosystems and human water use in many areas of
the world. Melting of the snow pack that accumulates
over winter often constitutes a major proportion of the
annual water yield (Barnett et al., 2005). From a global
perspective, some of the largest changes in the hydro-
logical regime have been predicted for snow-dominated
regions in mid-to-high latitudes, where a warmer climate
can result in a fundamental alteration to the distribution
and duration of snow cover, and hence in the snow pack’s
ability to contribute water to the stream (Nijssen et al.,
2001). Despite the importance of seasonal snow cover and
freezing conditions in many northern areas, the winter
season is generally the period least studied and understood
(Campbell et al., 2005). This poor understanding of
the role of winter processes is especially challenging as
this is the period where the effects of climate change are
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expected to be most strongly expressed (IPCC, 2007) and
where the most clear observational evidence of change
already exists (Huntington et al., 2009; Harpold et al., 2012).
Dissolved organic carbon (DOC) is an important

natural constituent affecting fundamental aspects of the
biogeochemistry and ecology of freshwaters (e.g. Hruska
et al., 2003; Berggren et al., 2010). A recent increase in
surface water DOC across large regions of the northern
hemisphere (Monteith et al., 2007; Dawson et al., 2008;
Haaland et al., 2010) has resulted in increasing research
efforts to better understand the regulation and transport
mechanisms of DOC. Increasing water purification costs for
drinking water and the formation of mutagenic chlorinated
organic by-products (McDonald and Komulainen, 2005)
are direct consequences of elevated DOC levels, but
ecosystem responses to this increase can also be expected
(Karlsson et al., 2009). Thus, an improved understanding
of the underlying mechanisms of DOC regulation is of
fundamental importance for our ability to predict future
shifts in the chemistry and ecology of aquatic ecosystems
in mid-to-high latitudes.
The conceptual understanding of stream water DOC

regulation has largely been developed in the temperate
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regions of the world (e.g. Mulholland, 1992). Recently,
however, more attention has been focused on northern
regions, particularly the northern temperate, boreal and
sub-arctic biomes where the DOC concentrations of
streams, rivers and lakes often are substantially higher
(Laudon et al., 2012). This increased attention is partly
motivated by a global carbon cycling perspective that
recognizes the large carbon storage in these mid-to-high
latitude regions (Cole et al., 2007; Nilsson et al., 2008). In
addition, climate change scenarios predict that some of
the most significant changes will be in northern regions of
the world (IPCC, 2007). These regions are particularly
sensitive to climate perturbations during winter as relatively
small changes in temperature determine the form of
precipitation,magnitude and timing of snowmelt, and extent
of soil frost and active soil layers (Stieglitz et al., 2003).
Most previous research on mechanisms that regulate

surface water DOC in northern regions has been based on
individual well-studied catchments (e.g., Hinton et al.,
1998; Billett et al., 2006; Petrone et al., 2006; Eimers
et al., 2008a) or on larger regional monitoring datasets
(Evans et al., 2006; Clair et al., 2008; Erlandsson et al.,
2008). Although a major advantage of individual research
catchments is the large amount of ancillary data that can
provide mechanistic explanations, a disadvantage is that
the results can be difficult to extrapolate outside the study
region because of limited geographic representation.
Conversely, a limitation of environmental monitoring is
that the data collection commonly is not designed to
answer process-based questions, which can impede the
inference of causal relationships (Lovett et al., 2007).
Here, we synthesize catchment data across eight

well-studied research catchments in Sweden, Scotland,
Canada and the USA to explore the seasonality and
synchroneity of water and DOC flux. Seasonality and
synchroneity of water and DOC fluxes are fundamental
aspects of streams and rivers with important implications
for ecosystem functioning and understanding the
regulating mechanisms of DOC. The seasonality, or the
seasonal timing and distribution, of the fluxes is not only
important for such downstream utilization as hydropower
or drinking water production but also for downstream
ecosystems that have adapted over millennia to recurring
seasonal patterns. Synchroneity, on the other hand, refers
to the coupling of water and DOC fluxes in time; the
degree to which these fluxes are in (or out) of phase
reveals how sources of DOC production are connected/
disconnected to catchment streams at different times of
the year.
Figure 1. Location of the study catchments: I Strontian; II Mharcaidh; III Girnock

Copyright © 2012 John Wiley & Sons, Ltd.
We test the hypothesis that winter air temperature is a
first-order control on the seasonality and synchroneity of
water and DOC fluxes in mid-to-high latitude streams. This
entailed the examination of results from field observations
from our eight catchments that cover a large gradient of
hydro-climatic conditions across the northern region,
spanning annual average temperatures from �2 to +9 �C
and annual precipitation from less than 500 to greater than
2600mm. Our objective was to contribute to more robust
predictions of how a change in winter climatic conditions
will alter the seasonality and synchroneity of DOC export in
mid-to-high latitude catchments by combining the natural
climatic gradient among catchments with inter-annual
variability of the individual streams for inferring future
climate-driven trends.
STUDY SITES

The eight catchments included in our analysis (one in
Sweden, three in Scotland, two in Canada and two in the
USA) are part of the Northern Watershed Ecosystem
Response to Climate Change (North-Watch) programme
(www.abdn.ac.uk/northwatch) and are well-investigated
long-term research catchments in the mid-to-high latitudes
(Figure 1). There is an extensive set of publications on the
hydrological and biogeochemical functioning of these
individual catchments based on rich stream, soil, vegetation
and climatic datasets. A comparative examination of the
hydroclimatic controls on catchment hydrology of these
North-Watch sites has recently been presented by Carey
et al. (2010). Here, only a short description of the study sites,
sorted by mean annual temperature, is given in Table I.
Granger catchment in the Wolf Creek Research Basin in

Yukon, Canada, is the coldest of the catchments and is
currently one of the most studied permafrost catchments in
terms of hydrology and biogeochemistry (McCartney et al.,
2006). The climate is continental subarctic, with a mean
annual temperature (T), precipitation (P) and discharge (Q)
of �2.2 �C, 478mm and 352mm, respectively. Permafrost
underlies approximately 70% of the catchment area (Carey,
2003). Svartberget (catchment 7) in the Krycklan catchment
is in the boreal forest in Sweden (Buffam et al., 2007). It is
the most northerly study site, with a milder and wetter
climate than Wolf Creek and T, P and Q of 2.4 �C, 651mm
and 327mm, respectively. There is no permafrost, but soil
frost depth can reach to 60 cm during winter (Mellander
et al., 2007). The forested W-9 catchment at Sleepers
River, Vermont, USA, has a humid continental climate
; IV Krycklan; V Sleepers River; VII Dorset, VII HJ Andrews, VIII Wolf Creek

Hydrol. Process. 27, 700–709 (2013)
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(Shanley et al., 2004), with T, P andQ of 4.7 �C, 1256mm
and 743mm, respectively. Soil frost is intermittent and is
usually <10 cm in the forest (Shanley and Chalmers,
1999). Harp Lake 4 in Dorset, Ontario, Canada, is at the
transition to the southern Boreal ecozone (Eimers et al.,
2008b). It has a humid continental climate similar to
Sleepers River with a T, P and Q of 4.9 �C, 980mm and
577mm, respectively. Soil frost occurs rarely, except in
wetlands where it is common each winter. In Scotland, the
Allt’ a Mharcaidh site is located in the subarctic
Cairngorms region (Soulsby et al., 1997). T, P and Q
are 5.7 �C, 1222mm and 873mm, respectively. The
Girnock catchment (Tetzlaff et al., 2007) has a T, P andQ
of 6.7 �C, 1059mm and 603mm, respectively. Strontian
is located in the maritime northwest of Scotland and is the
wettest of the study catchments. T, P and Q are 9.1 �C,
2632mm and 2213mm, respectively. Mack Creek, in the
HJ Andrews research forest in the western Cascades of
Oregon in the USA (Hood et al., 2006) is a steep, high-relief
catchment. It is the warmest of the study catchments with a
T, P and Q of 9.2 �C, 2158mm and 1744mm, respectively.
METHODS

Datasets of T, P and Q at each of the eight sites include
more than 10 years of continuous daily record, excluding
the Mharcaidh catchment, which has a 4 year record and
where data from the nearby Girnock catchment was used
to interpolate missing winter temperatures. For Dorset
winter, temperature data were missing for the last 5 years.
DOC data were collected within the individual research
programmes and span from four to over 20 years (Table I).
To standardize the comparison, only data from the last
10 years (1998 to 2008) were used. Only periods where
climate, hydrology and DOC observation data were
available (or could be calculated from nearby stations)
and were included in the seasonality and synchroneity
analysis. This resulted in a total of 10 years from
Krycklan, Sleepers River and Allt’ a Mharcaidh, 6 years
from Strontian, 5 years from Dorset and Wolf Creek, and
3 years from Girnock and HJ Andrews. In Krycklan, the
DOC concentration has for some years been measured as
total organic carbon (Table I), but all data are referred to
as DOC because the difference between DOC and total
organic carbon is not statistically significant at that site
(see Laudon et al., 2011 for details).
Export of DOC was calculated by linear interpolation

of individual sampling occasions to daily values and
multiplication with discharge to give daily flux in
kgC ha�1 following Ågren et al. (2007). Mean annual
and seasonal (winter, spring, summer and autumn) flux
values were calculated and compared with mean annual
and seasonal climate (Table II). Synchroneity was
calculated as the mean monthly and seasonal difference
in the annual proportion of water and DOC flux. Similar
to the long-term average values of seasonality and
synchroneity for each catchment, seasonal values were
also determined for each year individually.
Hydrol. Process. 27, 700–709 (2013)
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Seasonality was defined as the proportion of annual
export of water (Equation (1), Table III) and DOC
(Equation (2), Table III) occurring during winter (defined
as January–March), spring (April–June), summer
(July–September) and autumn (October–December) and
synchroneity as the similarity in proportion of the annual
flux of water and DOC occurring each season and month
(Equation (2), Table III).
RESULTS

The seasonality of runoff and DOC export varied
markedly across the study sites (Figure 2). Colder sites
(less than�5 �Cmean winter temperature, represented by
Wolf Creek, Krycklan, Sleepers and Dorset) had a large
proportion of annual export during spring (40–80%;
Figure 3), with more limited export during winter
(2–19%), summer (15–30%) and autumn (3–32%).Warmer
sites (>0 �C mean winter temperature, represented by
Mharcaidh, Girnock, Strontian and HJ Andrews) exported
a larger portion of their annual DOC load during autumn
(20–40%) and winter (20–35%). Spring export was small
(7–20%) at these warmer sites (Figure 3), and summer
export was highly variable (3–35%). Mean winter
temperature was positively correlated to winter DOC export
(r2 = 0.65; p=0.01) and negatively correlated with spring
DOC export (r2 = 0.85; p=0.001, Figure 3) across all sites.
Similar to the pattern for average seasonal values

(Figure 3) across sites, a larger fraction of the annual export
occurred during spring atmost individual catchments during
years with colder winters (Figure 4). Although there were
no significant correlations for individual catchments,
combining all data from all sites gave a weak but significant
correlation between the inter-annual variation in winter
temperature and spring DOC export (r2 = 0.15; p=0.006).
There was a general synchroneity between DOC and

water export at all sites (Figure 2). The timing of the largest
deviation from this synchroneity varied across sites, but
there was generally a lower relative DOC to water export
during winter and spring and higher relative DOC to water
export during summer and autumn. Synchroneity during
both winter and spring was significantly correlated to mean
winter temperature (Figure 5). Synchroneity decreased
during winter with warmer mean winter temperature
(r2 = 0.73; p< 0.01), whereas it increased during spring
(r2 = 0.64; p=0.01). One exception to this general pattern
was Wolf Creek that had higher DOC export relative to
discharge during spring. Even with Wolf Creek excluded
from the regression, the synchroneity during spring was
significantly correlated with winter mean temperature
(r2 = 0.59; p=0.04). Hence, catchments with colder winters
experienced a stronger synchroneity betweenDOC andwater
flux during winter and a weaker synchroneity during spring.
Similar to the long-term average seasonal pattern, the

between-year variability in synchroneity was positively
related to warmer winter temperatures during individual
years during spring (r2 = 0.26; p< 0.001, Figure 6) but
less so during winter (r2 = 0.11, p = 0.09, not shown). The
Hydrol. Process. 27, 700–709 (2013)



Table III. Calculation of seasonality of water and DOC fluxes as well as synchroneity

Characteristic Calculation

Seasonality for water fluxes, evaluated for a certain month or season. Q seasonal or monthlyð Þ
Q annualð Þ

(1)

Seasonality for DOC fluxes, evaluated for a certain month or season. C seasonal or monthlyð Þ
C annualð Þ

(2)

Synchroneity for water and DOC fluxes, evaluated for a certain month or season. Q seasonal or monthlyð Þ
Q annualð Þ

� C seasonal or monthlyð Þ
C annualð Þ

(3)

Q(seasonal or monthly) (m
3) is the sum of discharge during the respective seasons (or month) and Qannual (m

3) is the annual sum of discharge. Similarly,
C(seasonal or monthly) (kg) and Cannual (kg) are the DOC fluxes during the respective season (or month) and the annual sum.
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(red solid line) flux is the measure of synchroneity. Sites are ordered according to mean air temperature and precipitation, with the warmest and wettest

sites at the top and coldest and driest sites at the bottom of the figure
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Figure 3. Correlation of mean winter temperature (January–March) and the percentage of seasonal DOC export from the eight sites. Error bars denote
one standard deviation of winter temperature and seasonal DOC export
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Copyright © 2012 John Wiley & Sons, Ltd.
relationship betweenwinter temperature and the synchroneity
of water and DOC flux observed for all sites combined
(Figure 6) was significant for only one site (Sleepers River).
DISCUSSION

On the basis of time series of stream water and DOC fluxes
from catchments along a large-scale climatic gradient, we
analysed how their seasonality and synchroneity may be
affected by the variability and changes in winter climatic
conditions. Despite the weak correlations with winter
temperature for the individual sites, the combined
normalized values (Figures 4 and 6) indicate decreased
seasonality and increased synchroneity during the spring
associated with warmer winters. These results are
corroborated by the large climatic gradient demonstrating
a similar pattern across all catchments. The analysis
suggests that although the interannual variability in climate
may explain individual catchment response to short-term
Hydrol. Process. 27, 700–709 (2013)
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fluctuations, the climate gradient offers a framework
for understanding the possible trajectory of individual
system response to more lasting and large-scale changes
in the future.
Most previous studies on water and DOC fluxes from

northern regions have been carried out using data from
major rivers in North America (Rember and Trefry, 2004;
Striegl et al., 2005) and Eurasia (Alling et al., 2010;
Pokrovsky et al., 2010). These large systems often
integrate a multitude of landscape types and processes
over large, sometimes sub-continental, regions. In
contrast, the small relatively homogenous catchments
included in this study provide a tighter connection
between terrestrial and aquatic processes that allows a
more mechanistic understanding of the underlying
processes (Tetzlaff et al., 2009). Such smaller systems
are usually characterized by shorter travel time for water
and solutes between the soil/stream interface, thus
minimizing the influence of internal stream processes.
What is measured can hence be seen as an integrated
signal of the terrestrial sources that contribute to stream
water quality.
In this work, we placed a special emphasis on the role of

winters as they are defining features of mid-to-high
latitude regions and are integral for much of the ecological
and biogeochemical functioning of high latitude regions
(Haei et al., 2010; Kreyling, 2010). It has previously been
established that cold winter conditions increase root
mortality (Tierney et al., 2001), elevate soil nitrate levels
(Fitzhugh et al., 2001), affect soil CO2 production (Öquist
and Laudon, 2008) and influence soil organic matter
decomposition rates (Schimel and Mikan, 2005; Haei et al.,
2012) as well as microbial water availability (Sparrman
et al., 2004). Although we are now beginning to understand
some of the fundamental aspects of winter processes for
soil ecosystems, much less is known about how freshwater
ecosystems could be affected.
The correlation between mean winter temperature and

winter and spring DOC fluxes both within (Figure 3) and
among catchments (Figure 4) in this study indicates that
winter conditions influence the seasonality of DOC
export. While in general agreement with other northern
studies (Finlay et al., 2006; Ågren et al., 2007; Eimers
et al., 2008a), these results show a more direct link
between winter climatic conditions and the seasonality of
DOC export across this climatic gradient. We attribute this
seasonality primarily to the large seasonal water storage in
the snow pack overwinter and the subsequent release during
spring in most of the catchments investigated. A likely
consequence of warmer future winters would hence be that
the seasonality in these snow-covered systems could move
from a spring dominated export to a greater relative DOC
export during winter.
Undoubtedly, climatic factors other than winter

temperature also affect the production of DOC and
subsequent transport to the stream. Variable soil moisture
conditions can cause large intra-annual and inter-annual
variability in DOC export (Köhler et al., 2008). Higher
temperatures also enhance DOC production rates, resulting
Copyright © 2012 John Wiley & Sons, Ltd.
in greater DOC concentrations for a given flow in summer
and autumn compared with winter and spring (Moore
et al., 2008; Seibert et al., 2009). The seasonal dependence
of DOC production is manifested in the study catchments
as temporal variability in the synchroneity between water
and DOC fluxes. Although most sites follow the
conceptual model of higher DOC production in later
stages of the growing season, the divergence of Wolf
Creek from this pattern was likely related to the increasing
active layer depth above permafrost (Striegl et al., 2005;
Petrone et al., 2006). The strong connectivity between the
organic soil DOC sources and stream when the soil was
frozen subsequently weakened and a thickening active
layer in later summer and autumn resulted in longer
subsurface flow pathways (Carey, 2003).
The role of connectivity of organic-rich soils and

streams is receiving increasing interest (Clark et al., 2010;
Laudon et al., 2011; Tank et al., 2012). Although it is
clear that stream-connected peatlands play a fundamental
role in controlling stream water DOC in many northern
catchments (Dillon and Molot, 1997; Creed et al., 2003;
Laudon et al., 2004), forested areas on mineral soils can
also contribute significant sources of DOC to streams
(Ågren et al., 2007). All catchments examined here
have relatively low percent wetland coverage (<15%)
indicating that other sources of DOC may be important at
these sites. However, because areas of low wetland
percentage dominate most landscapes, they often have a
proportionately larger role in exporting DOC than organic
dominated catchments in most areas, despite generally
lower concentrations. Increasing evidence is emerging
that organic-rich riparian soils are of fundamental
importance for stream water DOC (Findlay et al., 2001;
McGlynn and McDonnell, 2003; Bishop et al., 2004;
Petrone et al., 2007; Seibert et al., 2009). However,
hydrologically connected organic topsoil layers or small
local patches of organic soils can also be potential sources
of DOC in some areas (Boyer et al., 2000).
Seasonal variability in the connectivity between the

terrestrial sources of DOC and the stream has not only
been reported from the permafrost site at Wolf Creek but
also from catchments with seasonal soil frost. For
example, concrete soil frost conditions in the Krycklan
sub-catchments cause overland flow during snow melt,
short-circuiting the normal subsurface hydrologic connection
between soil and stream (Laudon et al., 2007). This effect
is especially manifested in wetland dominated systems,
causing a larger deviation in the synchroneity between
water and DOC flux (Berggren et al., 2007; Ågren et al.,
2008). Soil frost has also been reported at Sleepers River
during relatively cold and snow-poor winters (Shanley
and Chalmers, 1999), augmenting the negative correlation
between synchroneity and harsher winter conditions
(Figures 5 and 6).
The weak synchroneity of water and DOC flux found

for the colder sites during spring is likely related to
flushing of DOC that has either built up during winter or
has remained from the previous autumn, and that cannot
be replaced until the soils are thawed when the conditions
Hydrol. Process. 27, 700–709 (2013)
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for production are more favourable. Little is known about
DOC production under winter conditions; however,
recent evidence suggests that colder winters with more
extensive soil frost also can enhance DOC levels in
snowmelt waters in some catchments by physical
disruption of cells and other soil organic matter or by
slowing the mineralization rate (Haei et al., 2012). Thus,
although colder winter conditions can augment DOC
export in individual catchments (Ågren et al., 2010), this
trans-regional study suggests that colder winter conditions
systematically shift the synchroneity of the water/DOC
relationship toward relatively higher DOC export during
summer and autumn.
In this work, we consider changes in air temperature

only. As large changes in precipitation are also predicted
in these northern regions (IPCC, 2007), the consequences
of warmer winter temperatures on DOC and water fluxes
that we predict will likely be confounded by other
concurrent processes. Such changes include alterations in
the timing and amount of precipitation, evapotranspiration,
runoff and changes in the vegetation cover (Jones et al.,
2012). However, by isolating winter temperature, which
presumably is one of the major driving variables
determining the timing and magnitude of snow melt
discharge as well as DOC production, we can begin to
understand the major mechanisms determining the
seasonality and synchroneity of water and DOC flux in
northern regions.
The consequences of future climate change scenarios in

northern catchments could be substantial. Results from this
study lead us to hypothesize that withwarmerwinters,many
northern catchments will move from a strongly seasonal
behaviour to a more evenly distributed export of water and
DOC in the future. They also suggest that water and DOC
fluxes may become less synchronous during winter and
more synchronous during spring (Figure 7). Hence, warmer
winters in the future could have important implications
for stream-connected ecosystems that have adapted over
several millennia to strong seasonal variability in these
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Figure 7. Conceptual model of the future mid-to-high latitude catchments.
As winters become warmer, DOC export will be less seasonally
concentrated. The dominant flux period will shift from spring to an
export that is more evenly distributed throughout the year. We hypothesize
that another consequence of a warmer climate is that the synchroneity
(coupling) between the export of water and DOC will decrease during

spring and increase during winter

Copyright © 2012 John Wiley & Sons, Ltd.
fluxes. These effects are likely to be most prominent for
regions that presently are at, or just below, the 0 �C isotherm
during winter.
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